ast --- 抽象語(yǔ)法樹(shù)?
源代碼: Lib/ast.py
ast 模塊幫助 Python 程序處理 Python 語(yǔ)法的抽象語(yǔ)法樹(shù)。抽象語(yǔ)法或許會(huì )隨著(zhù) Python 的更新發(fā)布而改變;該模塊能夠幫助理解當前語(yǔ)法在編程層面的樣貌。
抽象語(yǔ)法樹(shù)可通過(guò)將 ast.PyCF_ONLY_AST 作為旗標傳遞給 compile() 內置函數來(lái)生成,或是使用此模塊中提供的 parse() 輔助函數。返回結果將是一個(gè)對象樹(shù),,其中的類(lèi)都繼承自 ast.AST。抽象語(yǔ)法樹(shù)可被內置的 compile() 函數編譯為一個(gè) Python 代碼對象。
抽象文法?
抽象文法目前定義如下
-- ASDL's 4 builtin types are:
-- identifier, int, string, constant
module Python
{
mod = Module(stmt* body, type_ignore* type_ignores)
| Interactive(stmt* body)
| Expression(expr body)
| FunctionType(expr* argtypes, expr returns)
stmt = FunctionDef(identifier name, arguments args,
stmt* body, expr* decorator_list, expr? returns,
string? type_comment)
| AsyncFunctionDef(identifier name, arguments args,
stmt* body, expr* decorator_list, expr? returns,
string? type_comment)
| ClassDef(identifier name,
expr* bases,
keyword* keywords,
stmt* body,
expr* decorator_list)
| Return(expr? value)
| Delete(expr* targets)
| Assign(expr* targets, expr value, string? type_comment)
| AugAssign(expr target, operator op, expr value)
-- 'simple' indicates that we annotate simple name without parens
| AnnAssign(expr target, expr annotation, expr? value, int simple)
-- use 'orelse' because else is a keyword in target languages
| For(expr target, expr iter, stmt* body, stmt* orelse, string? type_comment)
| AsyncFor(expr target, expr iter, stmt* body, stmt* orelse, string? type_comment)
| While(expr test, stmt* body, stmt* orelse)
| If(expr test, stmt* body, stmt* orelse)
| With(withitem* items, stmt* body, string? type_comment)
| AsyncWith(withitem* items, stmt* body, string? type_comment)
| Match(expr subject, match_case* cases)
| Raise(expr? exc, expr? cause)
| Try(stmt* body, excepthandler* handlers, stmt* orelse, stmt* finalbody)
| TryStar(stmt* body, excepthandler* handlers, stmt* orelse, stmt* finalbody)
| Assert(expr test, expr? msg)
| Import(alias* names)
| ImportFrom(identifier? module, alias* names, int? level)
| Global(identifier* names)
| Nonlocal(identifier* names)
| Expr(expr value)
| Pass | Break | Continue
-- col_offset is the byte offset in the utf8 string the parser uses
attributes (int lineno, int col_offset, int? end_lineno, int? end_col_offset)
-- BoolOp() can use left & right?
expr = BoolOp(boolop op, expr* values)
| NamedExpr(expr target, expr value)
| BinOp(expr left, operator op, expr right)
| UnaryOp(unaryop op, expr operand)
| Lambda(arguments args, expr body)
| IfExp(expr test, expr body, expr orelse)
| Dict(expr* keys, expr* values)
| Set(expr* elts)
| ListComp(expr elt, comprehension* generators)
| SetComp(expr elt, comprehension* generators)
| DictComp(expr key, expr value, comprehension* generators)
| GeneratorExp(expr elt, comprehension* generators)
-- the grammar constrains where yield expressions can occur
| Await(expr value)
| Yield(expr? value)
| YieldFrom(expr value)
-- need sequences for compare to distinguish between
-- x < 4 < 3 and (x < 4) < 3
| Compare(expr left, cmpop* ops, expr* comparators)
| Call(expr func, expr* args, keyword* keywords)
| FormattedValue(expr value, int conversion, expr? format_spec)
| JoinedStr(expr* values)
| Constant(constant value, string? kind)
-- the following expression can appear in assignment context
| Attribute(expr value, identifier attr, expr_context ctx)
| Subscript(expr value, expr slice, expr_context ctx)
| Starred(expr value, expr_context ctx)
| Name(identifier id, expr_context ctx)
| List(expr* elts, expr_context ctx)
| Tuple(expr* elts, expr_context ctx)
-- can appear only in Subscript
| Slice(expr? lower, expr? upper, expr? step)
-- col_offset is the byte offset in the utf8 string the parser uses
attributes (int lineno, int col_offset, int? end_lineno, int? end_col_offset)
expr_context = Load | Store | Del
boolop = And | Or
operator = Add | Sub | Mult | MatMult | Div | Mod | Pow | LShift
| RShift | BitOr | BitXor | BitAnd | FloorDiv
unaryop = Invert | Not | UAdd | USub
cmpop = Eq | NotEq | Lt | LtE | Gt | GtE | Is | IsNot | In | NotIn
comprehension = (expr target, expr iter, expr* ifs, int is_async)
excepthandler = ExceptHandler(expr? type, identifier? name, stmt* body)
attributes (int lineno, int col_offset, int? end_lineno, int? end_col_offset)
arguments = (arg* posonlyargs, arg* args, arg? vararg, arg* kwonlyargs,
expr* kw_defaults, arg? kwarg, expr* defaults)
arg = (identifier arg, expr? annotation, string? type_comment)
attributes (int lineno, int col_offset, int? end_lineno, int? end_col_offset)
-- keyword arguments supplied to call (NULL identifier for **kwargs)
keyword = (identifier? arg, expr value)
attributes (int lineno, int col_offset, int? end_lineno, int? end_col_offset)
-- import name with optional 'as' alias.
alias = (identifier name, identifier? asname)
attributes (int lineno, int col_offset, int? end_lineno, int? end_col_offset)
withitem = (expr context_expr, expr? optional_vars)
match_case = (pattern pattern, expr? guard, stmt* body)
pattern = MatchValue(expr value)
| MatchSingleton(constant value)
| MatchSequence(pattern* patterns)
| MatchMapping(expr* keys, pattern* patterns, identifier? rest)
| MatchClass(expr cls, pattern* patterns, identifier* kwd_attrs, pattern* kwd_patterns)
| MatchStar(identifier? name)
-- The optional "rest" MatchMapping parameter handles capturing extra mapping keys
| MatchAs(pattern? pattern, identifier? name)
| MatchOr(pattern* patterns)
attributes (int lineno, int col_offset, int end_lineno, int end_col_offset)
type_ignore = TypeIgnore(int lineno, string tag)
}
節點(diǎn)類(lèi)?
- class ast.AST?
這是所有 AST 節點(diǎn)類(lèi)的基類(lèi)。實(shí)際上,這些節點(diǎn)類(lèi)派生自
Parser/Python.asdl文件,其中定義的語(yǔ)法樹(shù)示例 如下。它們在 C 語(yǔ)言模塊_ast中定義,并被導出至ast模塊。抽象語(yǔ)法定義的每個(gè)左側符號(比方說(shuō),
ast.stmt或者ast.expr)定義了一個(gè)類(lèi)。另外,在抽象語(yǔ)法定義的右側,對每一個(gè)構造器也定義了一個(gè)類(lèi);這些類(lèi)繼承自樹(shù)左側的類(lèi)。比如,ast.BinOp繼承自ast.expr。對于多分支產(chǎn)生式(也就是"和規則"),樹(shù)右側的類(lèi)是抽象的;只有特定構造器結點(diǎn)的實(shí)例能被構造。- _fields?
每個(gè)具體類(lèi)都有個(gè)屬性
_fields, 用來(lái)給出所有子節點(diǎn)的名字。每個(gè)具體類(lèi)的實(shí)例對它每個(gè)子節點(diǎn)都有一個(gè)屬性,對應類(lèi)型如文法中所定義。比如,
ast.BinOp的實(shí)例有個(gè)屬性left,類(lèi)型是ast.expr.如果這些屬性在文法中標記為可選(使用問(wèn)號),對應值可能會(huì )是
None。如果這些屬性有零或多個(gè)(用星號標記),對應值會(huì )用Python的列表來(lái)表示。所有可能的屬性必須在用compile()編譯得到AST時(shí)給出,且是有效的值。
- lineno?
- col_offset?
- end_lineno?
- end_col_offset?
Instances of
ast.exprandast.stmtsubclasses havelineno,col_offset,end_lineno, andend_col_offsetattributes. Thelinenoandend_linenoare the first and last line numbers of source text span (1-indexed so the first line is line 1) and thecol_offsetandend_col_offsetare the corresponding UTF-8 byte offsets of the first and last tokens that generated the node. The UTF-8 offset is recorded because the parser uses UTF-8 internally.Note that the end positions are not required by the compiler and are therefore optional. The end offset is after the last symbol, for example one can get the source segment of a one-line expression node using
source_line[node.col_offset : node.end_col_offset].
一個(gè)類(lèi)的構造器
ast.T像下面這樣parse它的參數。如果有位置參數,它們必須和
T._fields中的元素一樣多;他們會(huì )像這些名字的屬性一樣被賦值。如果有關(guān)鍵字參數,它們必須被設為和給定值同名的屬性。
比方說(shuō),要創(chuàng )建和填充節點(diǎn)
ast.UnaryOp,你得用node = ast.UnaryOp() node.op = ast.USub() node.operand = ast.Constant() node.operand.value = 5 node.operand.lineno = 0 node.operand.col_offset = 0 node.lineno = 0 node.col_offset = 0
或者更緊湊點(diǎn)
node = ast.UnaryOp(ast.USub(), ast.Constant(5, lineno=0, col_offset=0), lineno=0, col_offset=0)
在 3.8 版更改: Class ast.Constant is now used for all constants.
在 3.9 版更改: Simple indices are represented by their value, extended slices are represented as tuples.
3.8 版后已移除: Old classes ast.Num, ast.Str, ast.Bytes,
ast.NameConstant and ast.Ellipsis are still available,
but they will be removed in future Python releases. In the meantime,
instantiating them will return an instance of a different class.
3.9 版后已移除: Old classes ast.Index and ast.ExtSlice are still
available, but they will be removed in future Python releases.
In the meantime, instantiating them will return an instance of
a different class.
備注
The descriptions of the specific node classes displayed here were initially adapted from the fantastic Green Tree Snakes project and all its contributors.
字面值?
- class ast.Constant(value)?
A constant value. The
valueattribute of theConstantliteral contains the Python object it represents. The values represented can be simple types such as a number, string orNone, but also immutable container types (tuples and frozensets) if all of their elements are constant.>>> print(ast.dump(ast.parse('123', mode='eval'), indent=4)) Expression( body=Constant(value=123))
- class ast.FormattedValue(value, conversion, format_spec)?
Node representing a single formatting field in an f-string. If the string contains a single formatting field and nothing else the node can be isolated otherwise it appears in
JoinedStr.valueis any expression node (such as a literal, a variable, or a function call).conversionis an integer:-1: no formatting
115:
!sstring formatting114:
!rrepr formatting97:
!aascii formatting
format_specis aJoinedStrnode representing the formatting of the value, orNoneif no format was specified. Bothconversionandformat_speccan be set at the same time.
- class ast.JoinedStr(values)?
An f-string, comprising a series of
FormattedValueandConstantnodes.>>> print(ast.dump(ast.parse('f"sin({a}) is {sin(a):.3}"', mode='eval'), indent=4)) Expression( body=JoinedStr( values=[ Constant(value='sin('), FormattedValue( value=Name(id='a', ctx=Load()), conversion=-1), Constant(value=') is '), FormattedValue( value=Call( func=Name(id='sin', ctx=Load()), args=[ Name(id='a', ctx=Load())], keywords=[]), conversion=-1, format_spec=JoinedStr( values=[ Constant(value='.3')]))]))
- class ast.List(elts, ctx)?
- class ast.Tuple(elts, ctx)?
A list or tuple.
eltsholds a list of nodes representing the elements.ctxisStoreif the container is an assignment target (i.e.(x,y)=something), andLoadotherwise.>>> print(ast.dump(ast.parse('[1, 2, 3]', mode='eval'), indent=4)) Expression( body=List( elts=[ Constant(value=1), Constant(value=2), Constant(value=3)], ctx=Load())) >>> print(ast.dump(ast.parse('(1, 2, 3)', mode='eval'), indent=4)) Expression( body=Tuple( elts=[ Constant(value=1), Constant(value=2), Constant(value=3)], ctx=Load()))
- class ast.Set(elts)?
A set.
eltsholds a list of nodes representing the set's elements.>>> print(ast.dump(ast.parse('{1, 2, 3}', mode='eval'), indent=4)) Expression( body=Set( elts=[ Constant(value=1), Constant(value=2), Constant(value=3)]))
- class ast.Dict(keys, values)?
A dictionary.
keysandvalueshold lists of nodes representing the keys and the values respectively, in matching order (what would be returned when callingdictionary.keys()anddictionary.values()).When doing dictionary unpacking using dictionary literals the expression to be expanded goes in the
valueslist, with aNoneat the corresponding position inkeys.>>> print(ast.dump(ast.parse('{"a":1, **d}', mode='eval'), indent=4)) Expression( body=Dict( keys=[ Constant(value='a'), None], values=[ Constant(value=1), Name(id='d', ctx=Load())]))
Variables?
- class ast.Name(id, ctx)?
A variable name.
idholds the name as a string, andctxis one of the following types.
- class ast.Load?
- class ast.Store?
- class ast.Del?
Variable references can be used to load the value of a variable, to assign a new value to it, or to delete it. Variable references are given a context to distinguish these cases.
>>> print(ast.dump(ast.parse('a'), indent=4)) Module( body=[ Expr( value=Name(id='a', ctx=Load()))], type_ignores=[]) >>> print(ast.dump(ast.parse('a = 1'), indent=4)) Module( body=[ Assign( targets=[ Name(id='a', ctx=Store())], value=Constant(value=1))], type_ignores=[]) >>> print(ast.dump(ast.parse('del a'), indent=4)) Module( body=[ Delete( targets=[ Name(id='a', ctx=Del())])], type_ignores=[])
- class ast.Starred(value, ctx)?
A
*varvariable reference.valueholds the variable, typically aNamenode. This type must be used when building aCallnode with*args.>>> print(ast.dump(ast.parse('a, *b = it'), indent=4)) Module( body=[ Assign( targets=[ Tuple( elts=[ Name(id='a', ctx=Store()), Starred( value=Name(id='b', ctx=Store()), ctx=Store())], ctx=Store())], value=Name(id='it', ctx=Load()))], type_ignores=[])
表達式?
- class ast.Expr(value)?
When an expression, such as a function call, appears as a statement by itself with its return value not used or stored, it is wrapped in this container.
valueholds one of the other nodes in this section, aConstant, aName, aLambda, aYieldorYieldFromnode.>>> print(ast.dump(ast.parse('-a'), indent=4)) Module( body=[ Expr( value=UnaryOp( op=USub(), operand=Name(id='a', ctx=Load())))], type_ignores=[])
- class ast.UnaryOp(op, operand)?
A unary operation.
opis the operator, andoperandany expression node.
- class ast.UAdd?
- class ast.USub?
- class ast.Not?
- class ast.Invert?
Unary operator tokens.
Notis thenotkeyword,Invertis the~operator.>>> print(ast.dump(ast.parse('not x', mode='eval'), indent=4)) Expression( body=UnaryOp( op=Not(), operand=Name(id='x', ctx=Load())))
- class ast.BinOp(left, op, right)?
A binary operation (like addition or division).
opis the operator, andleftandrightare any expression nodes.>>> print(ast.dump(ast.parse('x + y', mode='eval'), indent=4)) Expression( body=BinOp( left=Name(id='x', ctx=Load()), op=Add(), right=Name(id='y', ctx=Load())))
- class ast.Add?
- class ast.Sub?
- class ast.Mult?
- class ast.Div?
- class ast.FloorDiv?
- class ast.Mod?
- class ast.Pow?
- class ast.LShift?
- class ast.RShift?
- class ast.BitOr?
- class ast.BitXor?
- class ast.BitAnd?
- class ast.MatMult?
Binary operator tokens.
- class ast.BoolOp(op, values)?
A boolean operation, 'or' or 'and'.
opisOrorAnd.valuesare the values involved. Consecutive operations with the same operator, such asa or b or c, are collapsed into one node with several values.This doesn't include
not, which is aUnaryOp.>>> print(ast.dump(ast.parse('x or y', mode='eval'), indent=4)) Expression( body=BoolOp( op=Or(), values=[ Name(id='x', ctx=Load()), Name(id='y', ctx=Load())]))
- class ast.Compare(left, ops, comparators)?
A comparison of two or more values.
leftis the first value in the comparison,opsthe list of operators, andcomparatorsthe list of values after the first element in the comparison.>>> print(ast.dump(ast.parse('1 <= a < 10', mode='eval'), indent=4)) Expression( body=Compare( left=Constant(value=1), ops=[ LtE(), Lt()], comparators=[ Name(id='a', ctx=Load()), Constant(value=10)]))
- class ast.Eq?
- class ast.NotEq?
- class ast.Lt?
- class ast.LtE?
- class ast.Gt?
- class ast.GtE?
- class ast.Is?
- class ast.IsNot?
- class ast.In?
- class ast.NotIn?
Comparison operator tokens.
- class ast.Call(func, args, keywords, starargs, kwargs)?
A function call.
funcis the function, which will often be aNameorAttributeobject. Of the arguments:argsholds a list of the arguments passed by position.keywordsholds a list ofkeywordobjects representing arguments passed by keyword.
When creating a
Callnode,argsandkeywordsare required, but they can be empty lists.starargsandkwargsare optional.>>> print(ast.dump(ast.parse('func(a, b=c, *d, **e)', mode='eval'), indent=4)) Expression( body=Call( func=Name(id='func', ctx=Load()), args=[ Name(id='a', ctx=Load()), Starred( value=Name(id='d', ctx=Load()), ctx=Load())], keywords=[ keyword( arg='b', value=Name(id='c', ctx=Load())), keyword( value=Name(id='e', ctx=Load()))]))
- class ast.keyword(arg, value)?
A keyword argument to a function call or class definition.
argis a raw string of the parameter name,valueis a node to pass in.
- class ast.IfExp(test, body, orelse)?
An expression such as
a if b else c. Each field holds a single node, so in the following example, all three areNamenodes.>>> print(ast.dump(ast.parse('a if b else c', mode='eval'), indent=4)) Expression( body=IfExp( test=Name(id='b', ctx=Load()), body=Name(id='a', ctx=Load()), orelse=Name(id='c', ctx=Load())))
- class ast.Attribute(value, attr, ctx)?
Attribute access, e.g.
d.keys.valueis a node, typically aName.attris a bare string giving the name of the attribute, andctxisLoad,StoreorDelaccording to how the attribute is acted on.>>> print(ast.dump(ast.parse('snake.colour', mode='eval'), indent=4)) Expression( body=Attribute( value=Name(id='snake', ctx=Load()), attr='colour', ctx=Load()))
- class ast.NamedExpr(target, value)?
A named expression. This AST node is produced by the assignment expressions operator (also known as the walrus operator). As opposed to the
Assignnode in which the first argument can be multiple nodes, in this case bothtargetandvaluemust be single nodes.>>> print(ast.dump(ast.parse('(x := 4)', mode='eval'), indent=4)) Expression( body=NamedExpr( target=Name(id='x', ctx=Store()), value=Constant(value=4)))
Subscripting?
- class ast.Subscript(value, slice, ctx)?
A subscript, such as
l[1].valueis the subscripted object (usually sequence or mapping).sliceis an index, slice or key. It can be aTupleand contain aSlice.ctxisLoad,StoreorDelaccording to the action performed with the subscript.>>> print(ast.dump(ast.parse('l[1:2, 3]', mode='eval'), indent=4)) Expression( body=Subscript( value=Name(id='l', ctx=Load()), slice=Tuple( elts=[ Slice( lower=Constant(value=1), upper=Constant(value=2)), Constant(value=3)], ctx=Load()), ctx=Load()))
- class ast.Slice(lower, upper, step)?
Regular slicing (on the form
lower:upperorlower:upper:step). Can occur only inside the slice field ofSubscript, either directly or as an element ofTuple.>>> print(ast.dump(ast.parse('l[1:2]', mode='eval'), indent=4)) Expression( body=Subscript( value=Name(id='l', ctx=Load()), slice=Slice( lower=Constant(value=1), upper=Constant(value=2)), ctx=Load()))
Comprehensions?
- class ast.ListComp(elt, generators)?
- class ast.SetComp(elt, generators)?
- class ast.GeneratorExp(elt, generators)?
- class ast.DictComp(key, value, generators)?
List and set comprehensions, generator expressions, and dictionary comprehensions.
elt(orkeyandvalue) is a single node representing the part that will be evaluated for each item.generatorsis a list ofcomprehensionnodes.>>> print(ast.dump(ast.parse('[x for x in numbers]', mode='eval'), indent=4)) Expression( body=ListComp( elt=Name(id='x', ctx=Load()), generators=[ comprehension( target=Name(id='x', ctx=Store()), iter=Name(id='numbers', ctx=Load()), ifs=[], is_async=0)])) >>> print(ast.dump(ast.parse('{x: x**2 for x in numbers}', mode='eval'), indent=4)) Expression( body=DictComp( key=Name(id='x', ctx=Load()), value=BinOp( left=Name(id='x', ctx=Load()), op=Pow(), right=Constant(value=2)), generators=[ comprehension( target=Name(id='x', ctx=Store()), iter=Name(id='numbers', ctx=Load()), ifs=[], is_async=0)])) >>> print(ast.dump(ast.parse('{x for x in numbers}', mode='eval'), indent=4)) Expression( body=SetComp( elt=Name(id='x', ctx=Load()), generators=[ comprehension( target=Name(id='x', ctx=Store()), iter=Name(id='numbers', ctx=Load()), ifs=[], is_async=0)]))
- class ast.comprehension(target, iter, ifs, is_async)?
One
forclause in a comprehension.targetis the reference to use for each element - typically aNameorTuplenode.iteris the object to iterate over.ifsis a list of test expressions: eachforclause can have multipleifs.is_asyncindicates a comprehension is asynchronous (using anasync forinstead offor). The value is an integer (0 or 1).>>> print(ast.dump(ast.parse('[ord(c) for line in file for c in line]', mode='eval'), ... indent=4)) # Multiple comprehensions in one. Expression( body=ListComp( elt=Call( func=Name(id='ord', ctx=Load()), args=[ Name(id='c', ctx=Load())], keywords=[]), generators=[ comprehension( target=Name(id='line', ctx=Store()), iter=Name(id='file', ctx=Load()), ifs=[], is_async=0), comprehension( target=Name(id='c', ctx=Store()), iter=Name(id='line', ctx=Load()), ifs=[], is_async=0)])) >>> print(ast.dump(ast.parse('(n**2 for n in it if n>5 if n<10)', mode='eval'), ... indent=4)) # generator comprehension Expression( body=GeneratorExp( elt=BinOp( left=Name(id='n', ctx=Load()), op=Pow(), right=Constant(value=2)), generators=[ comprehension( target=Name(id='n', ctx=Store()), iter=Name(id='it', ctx=Load()), ifs=[ Compare( left=Name(id='n', ctx=Load()), ops=[ Gt()], comparators=[ Constant(value=5)]), Compare( left=Name(id='n', ctx=Load()), ops=[ Lt()], comparators=[ Constant(value=10)])], is_async=0)])) >>> print(ast.dump(ast.parse('[i async for i in soc]', mode='eval'), ... indent=4)) # Async comprehension Expression( body=ListComp( elt=Name(id='i', ctx=Load()), generators=[ comprehension( target=Name(id='i', ctx=Store()), iter=Name(id='soc', ctx=Load()), ifs=[], is_async=1)]))
Statements?
- class ast.Assign(targets, value, type_comment)?
An assignment.
targetsis a list of nodes, andvalueis a single node.Multiple nodes in
targetsrepresents assigning the same value to each. Unpacking is represented by putting aTupleorListwithintargets.- type_comment?
type_commentis an optional string with the type annotation as a comment.
>>> print(ast.dump(ast.parse('a = b = 1'), indent=4)) # Multiple assignment Module( body=[ Assign( targets=[ Name(id='a', ctx=Store()), Name(id='b', ctx=Store())], value=Constant(value=1))], type_ignores=[]) >>> print(ast.dump(ast.parse('a,b = c'), indent=4)) # Unpacking Module( body=[ Assign( targets=[ Tuple( elts=[ Name(id='a', ctx=Store()), Name(id='b', ctx=Store())], ctx=Store())], value=Name(id='c', ctx=Load()))], type_ignores=[])
- class ast.AnnAssign(target, annotation, value, simple)?
An assignment with a type annotation.
targetis a single node and can be aName, aAttributeor aSubscript.annotationis the annotation, such as aConstantorNamenode.valueis a single optional node.simpleis a boolean integer set to True for aNamenode intargetthat do not appear in between parenthesis and are hence pure names and not expressions.>>> print(ast.dump(ast.parse('c: int'), indent=4)) Module( body=[ AnnAssign( target=Name(id='c', ctx=Store()), annotation=Name(id='int', ctx=Load()), simple=1)], type_ignores=[]) >>> print(ast.dump(ast.parse('(a): int = 1'), indent=4)) # Annotation with parenthesis Module( body=[ AnnAssign( target=Name(id='a', ctx=Store()), annotation=Name(id='int', ctx=Load()), value=Constant(value=1), simple=0)], type_ignores=[]) >>> print(ast.dump(ast.parse('a.b: int'), indent=4)) # Attribute annotation Module( body=[ AnnAssign( target=Attribute( value=Name(id='a', ctx=Load()), attr='b', ctx=Store()), annotation=Name(id='int', ctx=Load()), simple=0)], type_ignores=[]) >>> print(ast.dump(ast.parse('a[1]: int'), indent=4)) # Subscript annotation Module( body=[ AnnAssign( target=Subscript( value=Name(id='a', ctx=Load()), slice=Constant(value=1), ctx=Store()), annotation=Name(id='int', ctx=Load()), simple=0)], type_ignores=[])
- class ast.AugAssign(target, op, value)?
Augmented assignment, such as
a += 1. In the following example,targetis aNamenode forx(with theStorecontext),opisAdd, andvalueis aConstantwith value for 1.The
targetattribute cannot be of classTupleorList, unlike the targets ofAssign.>>> print(ast.dump(ast.parse('x += 2'), indent=4)) Module( body=[ AugAssign( target=Name(id='x', ctx=Store()), op=Add(), value=Constant(value=2))], type_ignores=[])
- class ast.Raise(exc, cause)?
A
raisestatement.excis the exception object to be raised, normally aCallorName, orNonefor a standaloneraise.causeis the optional part foryinraise x from y.>>> print(ast.dump(ast.parse('raise x from y'), indent=4)) Module( body=[ Raise( exc=Name(id='x', ctx=Load()), cause=Name(id='y', ctx=Load()))], type_ignores=[])
- class ast.Assert(test, msg)?
An assertion.
testholds the condition, such as aComparenode.msgholds the failure message.>>> print(ast.dump(ast.parse('assert x,y'), indent=4)) Module( body=[ Assert( test=Name(id='x', ctx=Load()), msg=Name(id='y', ctx=Load()))], type_ignores=[])
- class ast.Delete(targets)?
Represents a
delstatement.targetsis a list of nodes, such asName,AttributeorSubscriptnodes.>>> print(ast.dump(ast.parse('del x,y,z'), indent=4)) Module( body=[ Delete( targets=[ Name(id='x', ctx=Del()), Name(id='y', ctx=Del()), Name(id='z', ctx=Del())])], type_ignores=[])
- class ast.Pass?
A
passstatement.>>> print(ast.dump(ast.parse('pass'), indent=4)) Module( body=[ Pass()], type_ignores=[])
Other statements which are only applicable inside functions or loops are described in other sections.
Imports?
- class ast.Import(names)?
An import statement.
namesis a list ofaliasnodes.>>> print(ast.dump(ast.parse('import x,y,z'), indent=4)) Module( body=[ Import( names=[ alias(name='x'), alias(name='y'), alias(name='z')])], type_ignores=[])
- class ast.ImportFrom(module, names, level)?
Represents
from x import y.moduleis a raw string of the 'from' name, without any leading dots, orNonefor statements such asfrom . import foo.levelis an integer holding the level of the relative import (0 means absolute import).>>> print(ast.dump(ast.parse('from y import x,y,z'), indent=4)) Module( body=[ ImportFrom( module='y', names=[ alias(name='x'), alias(name='y'), alias(name='z')], level=0)], type_ignores=[])
- class ast.alias(name, asname)?
Both parameters are raw strings of the names.
asnamecan beNoneif the regular name is to be used.>>> print(ast.dump(ast.parse('from ..foo.bar import a as b, c'), indent=4)) Module( body=[ ImportFrom( module='foo.bar', names=[ alias(name='a', asname='b'), alias(name='c')], level=2)], type_ignores=[])
Control flow?
備注
Optional clauses such as else are stored as an empty list if they're
not present.
- class ast.If(test, body, orelse)?
An
ifstatement.testholds a single node, such as aComparenode.bodyandorelseeach hold a list of nodes.elifclauses don't have a special representation in the AST, but rather appear as extraIfnodes within theorelsesection of the previous one.>>> print(ast.dump(ast.parse(""" ... if x: ... ... ... elif y: ... ... ... else: ... ... ... """), indent=4)) Module( body=[ If( test=Name(id='x', ctx=Load()), body=[ Expr( value=Constant(value=Ellipsis))], orelse=[ If( test=Name(id='y', ctx=Load()), body=[ Expr( value=Constant(value=Ellipsis))], orelse=[ Expr( value=Constant(value=Ellipsis))])])], type_ignores=[])
- class ast.For(target, iter, body, orelse, type_comment)?
A
forloop.targetholds the variable(s) the loop assigns to, as a singleName,TupleorListnode.iterholds the item to be looped over, again as a single node.bodyandorelsecontain lists of nodes to execute. Those inorelseare executed if the loop finishes normally, rather than via abreakstatement.- type_comment?
type_commentis an optional string with the type annotation as a comment.
>>> print(ast.dump(ast.parse(""" ... for x in y: ... ... ... else: ... ... ... """), indent=4)) Module( body=[ For( target=Name(id='x', ctx=Store()), iter=Name(id='y', ctx=Load()), body=[ Expr( value=Constant(value=Ellipsis))], orelse=[ Expr( value=Constant(value=Ellipsis))])], type_ignores=[])
- class ast.While(test, body, orelse)?
A
whileloop.testholds the condition, such as aComparenode.>> print(ast.dump(ast.parse(""" ... while x: ... ... ... else: ... ... ... """), indent=4)) Module( body=[ While( test=Name(id='x', ctx=Load()), body=[ Expr( value=Constant(value=Ellipsis))], orelse=[ Expr( value=Constant(value=Ellipsis))])], type_ignores=[])
- class ast.Break?
- class ast.Continue?
The
breakandcontinuestatements.>>> print(ast.dump(ast.parse("""\ ... for a in b: ... if a > 5: ... break ... else: ... continue ... ... """), indent=4)) Module( body=[ For( target=Name(id='a', ctx=Store()), iter=Name(id='b', ctx=Load()), body=[ If( test=Compare( left=Name(id='a', ctx=Load()), ops=[ Gt()], comparators=[ Constant(value=5)]), body=[ Break()], orelse=[ Continue()])], orelse=[])], type_ignores=[])
- class ast.Try(body, handlers, orelse, finalbody)?
tryblocks. All attributes are list of nodes to execute, except forhandlers, which is a list ofExceptHandlernodes.>>> print(ast.dump(ast.parse(""" ... try: ... ... ... except Exception: ... ... ... except OtherException as e: ... ... ... else: ... ... ... finally: ... ... ... """), indent=4)) Module( body=[ Try( body=[ Expr( value=Constant(value=Ellipsis))], handlers=[ ExceptHandler( type=Name(id='Exception', ctx=Load()), body=[ Expr( value=Constant(value=Ellipsis))]), ExceptHandler( type=Name(id='OtherException', ctx=Load()), name='e', body=[ Expr( value=Constant(value=Ellipsis))])], orelse=[ Expr( value=Constant(value=Ellipsis))], finalbody=[ Expr( value=Constant(value=Ellipsis))])], type_ignores=[])
- class ast.TryStar(body, handlers, orelse, finalbody)?
tryblocks which are followed byexcept*clauses. The attributes are the same as forTrybut theExceptHandlernodes inhandlersare interpreted asexcept*blocks rather thenexcept.>>> print(ast.dump(ast.parse(""" ... try: ... ... ... except* Exception: ... ... ... """), indent=4)) Module( body=[ TryStar( body=[ Expr( value=Constant(value=Ellipsis))], handlers=[ ExceptHandler( type=Name(id='Exception', ctx=Load()), body=[ Expr( value=Constant(value=Ellipsis))])], orelse=[], finalbody=[])], type_ignores=[])
- class ast.ExceptHandler(type, name, body)?
A single
exceptclause.typeis the exception type it will match, typically aNamenode (orNonefor a catch-allexcept:clause).nameis a raw string for the name to hold the exception, orNoneif the clause doesn't haveas foo.bodyis a list of nodes.>>> print(ast.dump(ast.parse("""\ ... try: ... a + 1 ... except TypeError: ... pass ... """), indent=4)) Module( body=[ Try( body=[ Expr( value=BinOp( left=Name(id='a', ctx=Load()), op=Add(), right=Constant(value=1)))], handlers=[ ExceptHandler( type=Name(id='TypeError', ctx=Load()), body=[ Pass()])], orelse=[], finalbody=[])], type_ignores=[])
- class ast.With(items, body, type_comment)?
A
withblock.itemsis a list ofwithitemnodes representing the context managers, andbodyis the indented block inside the context.- type_comment?
type_commentis an optional string with the type annotation as a comment.
- class ast.withitem(context_expr, optional_vars)?
A single context manager in a
withblock.context_expris the context manager, often aCallnode.optional_varsis aName,TupleorListfor theas foopart, orNoneif that isn't used.>>> print(ast.dump(ast.parse("""\ ... with a as b, c as d: ... something(b, d) ... """), indent=4)) Module( body=[ With( items=[ withitem( context_expr=Name(id='a', ctx=Load()), optional_vars=Name(id='b', ctx=Store())), withitem( context_expr=Name(id='c', ctx=Load()), optional_vars=Name(id='d', ctx=Store()))], body=[ Expr( value=Call( func=Name(id='something', ctx=Load()), args=[ Name(id='b', ctx=Load()), Name(id='d', ctx=Load())], keywords=[]))])], type_ignores=[])
Pattern matching?
- class ast.Match(subject, cases)?
A
matchstatement.subjectholds the subject of the match (the object that is being matched against the cases) andcasescontains an iterable ofmatch_casenodes with the different cases.
- class ast.match_case(pattern, guard, body)?
A single case pattern in a
matchstatement.patterncontains the match pattern that the subject will be matched against. Note that theASTnodes produced for patterns differ from those produced for expressions, even when they share the same syntax.The
guardattribute contains an expression that will be evaluated if the pattern matches the subject.bodycontains a list of nodes to execute if the pattern matches and the result of evaluating the guard expression is true.>>> print(ast.dump(ast.parse(""" ... match x: ... case [x] if x>0: ... ... ... case tuple(): ... ... ... """), indent=4)) Module( body=[ Match( subject=Name(id='x', ctx=Load()), cases=[ match_case( pattern=MatchSequence( patterns=[ MatchAs(name='x')]), guard=Compare( left=Name(id='x', ctx=Load()), ops=[ Gt()], comparators=[ Constant(value=0)]), body=[ Expr( value=Constant(value=Ellipsis))]), match_case( pattern=MatchClass( cls=Name(id='tuple', ctx=Load()), patterns=[], kwd_attrs=[], kwd_patterns=[]), body=[ Expr( value=Constant(value=Ellipsis))])])], type_ignores=[])
- class ast.MatchValue(value)?
A match literal or value pattern that compares by equality.
valueis an expression node. Permitted value nodes are restricted as described in the match statement documentation. This pattern succeeds if the match subject is equal to the evaluated value.>>> print(ast.dump(ast.parse(""" ... match x: ... case "Relevant": ... ... ... """), indent=4)) Module( body=[ Match( subject=Name(id='x', ctx=Load()), cases=[ match_case( pattern=MatchValue( value=Constant(value='Relevant')), body=[ Expr( value=Constant(value=Ellipsis))])])], type_ignores=[])
- class ast.MatchSingleton(value)?
A match literal pattern that compares by identity.
valueis the singleton to be compared against:None,True, orFalse. This pattern succeeds if the match subject is the given constant.>>> print(ast.dump(ast.parse(""" ... match x: ... case None: ... ... ... """), indent=4)) Module( body=[ Match( subject=Name(id='x', ctx=Load()), cases=[ match_case( pattern=MatchSingleton(value=None), body=[ Expr( value=Constant(value=Ellipsis))])])], type_ignores=[])
- class ast.MatchSequence(patterns)?
A match sequence pattern.
patternscontains the patterns to be matched against the subject elements if the subject is a sequence. Matches a variable length sequence if one of the subpatterns is aMatchStarnode, otherwise matches a fixed length sequence.>>> print(ast.dump(ast.parse(""" ... match x: ... case [1, 2]: ... ... ... """), indent=4)) Module( body=[ Match( subject=Name(id='x', ctx=Load()), cases=[ match_case( pattern=MatchSequence( patterns=[ MatchValue( value=Constant(value=1)), MatchValue( value=Constant(value=2))]), body=[ Expr( value=Constant(value=Ellipsis))])])], type_ignores=[])
- class ast.MatchStar(name)?
Matches the rest of the sequence in a variable length match sequence pattern. If
nameis notNone, a list containing the remaining sequence elements is bound to that name if the overall sequence pattern is successful.>>> print(ast.dump(ast.parse(""" ... match x: ... case [1, 2, *rest]: ... ... ... case [*_]: ... ... ... """), indent=4)) Module( body=[ Match( subject=Name(id='x', ctx=Load()), cases=[ match_case( pattern=MatchSequence( patterns=[ MatchValue( value=Constant(value=1)), MatchValue( value=Constant(value=2)), MatchStar(name='rest')]), body=[ Expr( value=Constant(value=Ellipsis))]), match_case( pattern=MatchSequence( patterns=[ MatchStar()]), body=[ Expr( value=Constant(value=Ellipsis))])])], type_ignores=[])
- class ast.MatchMapping(keys, patterns, rest)?
A match mapping pattern.
keysis a sequence of expression nodes.patternsis a corresponding sequence of pattern nodes.restis an optional name that can be specified to capture the remaining mapping elements. Permitted key expressions are restricted as described in the match statement documentation.This pattern succeeds if the subject is a mapping, all evaluated key expressions are present in the mapping, and the value corresponding to each key matches the corresponding subpattern. If
restis notNone, a dict containing the remaining mapping elements is bound to that name if the overall mapping pattern is successful.>>> print(ast.dump(ast.parse(""" ... match x: ... case {1: _, 2: _}: ... ... ... case {**rest}: ... ... ... """), indent=4)) Module( body=[ Match( subject=Name(id='x', ctx=Load()), cases=[ match_case( pattern=MatchMapping( keys=[ Constant(value=1), Constant(value=2)], patterns=[ MatchAs(), MatchAs()]), body=[ Expr( value=Constant(value=Ellipsis))]), match_case( pattern=MatchMapping(keys=[], patterns=[], rest='rest'), body=[ Expr( value=Constant(value=Ellipsis))])])], type_ignores=[])
- class ast.MatchClass(cls, patterns, kwd_attrs, kwd_patterns)?
A match class pattern.
clsis an expression giving the nominal class to be matched.patternsis a sequence of pattern nodes to be matched against the class defined sequence of pattern matching attributes.kwd_attrsis a sequence of additional attributes to be matched (specified as keyword arguments in the class pattern),kwd_patternsare the corresponding patterns (specified as keyword values in the class pattern).This pattern succeeds if the subject is an instance of the nominated class, all positional patterns match the corresponding class-defined attributes, and any specified keyword attributes match their corresponding pattern.
Note: classes may define a property that returns self in order to match a pattern node against the instance being matched. Several builtin types are also matched that way, as described in the match statement documentation.
>>> print(ast.dump(ast.parse(""" ... match x: ... case Point2D(0, 0): ... ... ... case Point3D(x=0, y=0, z=0): ... ... ... """), indent=4)) Module( body=[ Match( subject=Name(id='x', ctx=Load()), cases=[ match_case( pattern=MatchClass( cls=Name(id='Point2D', ctx=Load()), patterns=[ MatchValue( value=Constant(value=0)), MatchValue( value=Constant(value=0))], kwd_attrs=[], kwd_patterns=[]), body=[ Expr( value=Constant(value=Ellipsis))]), match_case( pattern=MatchClass( cls=Name(id='Point3D', ctx=Load()), patterns=[], kwd_attrs=[ 'x', 'y', 'z'], kwd_patterns=[ MatchValue( value=Constant(value=0)), MatchValue( value=Constant(value=0)), MatchValue( value=Constant(value=0))]), body=[ Expr( value=Constant(value=Ellipsis))])])], type_ignores=[])
- class ast.MatchAs(pattern, name)?
A match "as-pattern", capture pattern or wildcard pattern.
patterncontains the match pattern that the subject will be matched against. If the pattern isNone, the node represents a capture pattern (i.e a bare name) and will always succeed.The
nameattribute contains the name that will be bound if the pattern is successful. IfnameisNone,patternmust also beNoneand the node represents the wildcard pattern.>>> print(ast.dump(ast.parse(""" ... match x: ... case [x] as y: ... ... ... case _: ... ... ... """), indent=4)) Module( body=[ Match( subject=Name(id='x', ctx=Load()), cases=[ match_case( pattern=MatchAs( pattern=MatchSequence( patterns=[ MatchAs(name='x')]), name='y'), body=[ Expr( value=Constant(value=Ellipsis))]), match_case( pattern=MatchAs(), body=[ Expr( value=Constant(value=Ellipsis))])])], type_ignores=[])
- class ast.MatchOr(patterns)?
A match "or-pattern". An or-pattern matches each of its subpatterns in turn to the subject, until one succeeds. The or-pattern is then deemed to succeed. If none of the subpatterns succeed the or-pattern fails. The
patternsattribute contains a list of match pattern nodes that will be matched against the subject.>>> print(ast.dump(ast.parse(""" ... match x: ... case [x] | (y): ... ... ... """), indent=4)) Module( body=[ Match( subject=Name(id='x', ctx=Load()), cases=[ match_case( pattern=MatchOr( patterns=[ MatchSequence( patterns=[ MatchAs(name='x')]), MatchAs(name='y')]), body=[ Expr( value=Constant(value=Ellipsis))])])], type_ignores=[])
Function and class definitions?
- class ast.FunctionDef(name, args, body, decorator_list, returns, type_comment)?
A function definition.
nameis a raw string of the function name.argsis anargumentsnode.bodyis the list of nodes inside the function.decorator_listis the list of decorators to be applied, stored outermost first (i.e. the first in the list will be applied last).returnsis the return annotation.
- type_comment?
type_commentis an optional string with the type annotation as a comment.
- class ast.Lambda(args, body)?
lambdais a minimal function definition that can be used inside an expression. UnlikeFunctionDef,bodyholds a single node.>>> print(ast.dump(ast.parse('lambda x,y: ...'), indent=4)) Module( body=[ Expr( value=Lambda( args=arguments( posonlyargs=[], args=[ arg(arg='x'), arg(arg='y')], kwonlyargs=[], kw_defaults=[], defaults=[]), body=Constant(value=Ellipsis)))], type_ignores=[])
- class ast.arguments(posonlyargs, args, vararg, kwonlyargs, kw_defaults, kwarg, defaults)?
The arguments for a function.
posonlyargs,argsandkwonlyargsare lists ofargnodes.varargandkwargare singleargnodes, referring to the*args, **kwargsparameters.kw_defaultsis a list of default values for keyword-only arguments. If one isNone, the corresponding argument is required.defaultsis a list of default values for arguments that can be passed positionally. If there are fewer defaults, they correspond to the last n arguments.
- class ast.arg(arg, annotation, type_comment)?
A single argument in a list.
argis a raw string of the argument name,annotationis its annotation, such as aStrorNamenode.- type_comment?
type_commentis an optional string with the type annotation as a comment
>>> print(ast.dump(ast.parse("""\ ... @decorator1 ... @decorator2 ... def f(a: 'annotation', b=1, c=2, *d, e, f=3, **g) -> 'return annotation': ... pass ... """), indent=4)) Module( body=[ FunctionDef( name='f', args=arguments( posonlyargs=[], args=[ arg( arg='a', annotation=Constant(value='annotation')), arg(arg='b'), arg(arg='c')], vararg=arg(arg='d'), kwonlyargs=[ arg(arg='e'), arg(arg='f')], kw_defaults=[ None, Constant(value=3)], kwarg=arg(arg='g'), defaults=[ Constant(value=1), Constant(value=2)]), body=[ Pass()], decorator_list=[ Name(id='decorator1', ctx=Load()), Name(id='decorator2', ctx=Load())], returns=Constant(value='return annotation'))], type_ignores=[])
- class ast.Return(value)?
A
returnstatement.>>> print(ast.dump(ast.parse('return 4'), indent=4)) Module( body=[ Return( value=Constant(value=4))], type_ignores=[])
- class ast.Yield(value)?
- class ast.YieldFrom(value)?
A
yieldoryield fromexpression. Because these are expressions, they must be wrapped in aExprnode if the value sent back is not used.>>> print(ast.dump(ast.parse('yield x'), indent=4)) Module( body=[ Expr( value=Yield( value=Name(id='x', ctx=Load())))], type_ignores=[]) >>> print(ast.dump(ast.parse('yield from x'), indent=4)) Module( body=[ Expr( value=YieldFrom( value=Name(id='x', ctx=Load())))], type_ignores=[])
- class ast.Global(names)?
- class ast.Nonlocal(names)?
globalandnonlocalstatements.namesis a list of raw strings.>>> print(ast.dump(ast.parse('global x,y,z'), indent=4)) Module( body=[ Global( names=[ 'x', 'y', 'z'])], type_ignores=[]) >>> print(ast.dump(ast.parse('nonlocal x,y,z'), indent=4)) Module( body=[ Nonlocal( names=[ 'x', 'y', 'z'])], type_ignores=[])
- class ast.ClassDef(name, bases, keywords, starargs, kwargs, body, decorator_list)?
A class definition.
nameis a raw string for the class namebasesis a list of nodes for explicitly specified base classes.keywordsis a list ofkeywordnodes, principally for 'metaclass'. Other keywords will be passed to the metaclass, as per PEP-3115.starargsandkwargsare each a single node, as in a function call. starargs will be expanded to join the list of base classes, and kwargs will be passed to the metaclass.bodyis a list of nodes representing the code within the class definition.decorator_listis a list of nodes, as inFunctionDef.
>>> print(ast.dump(ast.parse("""\ ... @decorator1 ... @decorator2 ... class Foo(base1, base2, metaclass=meta): ... pass ... """), indent=4)) Module( body=[ ClassDef( name='Foo', bases=[ Name(id='base1', ctx=Load()), Name(id='base2', ctx=Load())], keywords=[ keyword( arg='metaclass', value=Name(id='meta', ctx=Load()))], body=[ Pass()], decorator_list=[ Name(id='decorator1', ctx=Load()), Name(id='decorator2', ctx=Load())])], type_ignores=[])
Async and await?
- class ast.AsyncFunctionDef(name, args, body, decorator_list, returns, type_comment)?
An
async deffunction definition. Has the same fields asFunctionDef.
- class ast.Await(value)?
An
awaitexpression.valueis what it waits for. Only valid in the body of anAsyncFunctionDef.
>>> print(ast.dump(ast.parse("""\
... async def f():
... await other_func()
... """), indent=4))
Module(
body=[
AsyncFunctionDef(
name='f',
args=arguments(
posonlyargs=[],
args=[],
kwonlyargs=[],
kw_defaults=[],
defaults=[]),
body=[
Expr(
value=Await(
value=Call(
func=Name(id='other_func', ctx=Load()),
args=[],
keywords=[])))],
decorator_list=[])],
type_ignores=[])
- class ast.AsyncFor(target, iter, body, orelse, type_comment)?
- class ast.AsyncWith(items, body, type_comment)?
async forloops andasync withcontext managers. They have the same fields asForandWith, respectively. Only valid in the body of anAsyncFunctionDef.
備注
When a string is parsed by ast.parse(), operator nodes (subclasses
of ast.operator, ast.unaryop, ast.cmpop,
ast.boolop and ast.expr_context) on the returned tree
will be singletons. Changes to one will be reflected in all other
occurrences of the same value (e.g. ast.Add).
ast 中的輔助函數?
除了節點(diǎn)類(lèi), ast 模塊里為遍歷抽象語(yǔ)法樹(shù)定義了這些工具函數和類(lèi):
- ast.parse(source, filename='<unknown>', mode='exec', *, type_comments=False, feature_version=None)?
把源碼解析為AST節點(diǎn)。和
compile(source, filename, mode,ast.PyCF_ONLY_AST)等價(jià)。If
type_comments=Trueis given, the parser is modified to check and return type comments as specified by PEP 484 and PEP 526. This is equivalent to addingast.PyCF_TYPE_COMMENTSto the flags passed tocompile(). This will report syntax errors for misplaced type comments. Without this flag, type comments will be ignored, and thetype_commentfield on selected AST nodes will always beNone. In addition, the locations of# type: ignorecomments will be returned as thetype_ignoresattribute ofModule(otherwise it is always an empty list).In addition, if
modeis'func_type', the input syntax is modified to correspond to PEP 484 "signature type comments", e.g.(str, int) -> List[str].Also, setting
feature_versionto a tuple(major, minor)will attempt to parse using that Python version's grammar. Currentlymajormust equal to3. For example, settingfeature_version=(3, 4)will allow the use ofasyncandawaitas variable names. The lowest supported version is(3, 4); the highest issys.version_info[0:2].If source contains a null character ('0'),
ValueErroris raised.警告
Note that successfully parsing source code into an AST object doesn't guarantee that the source code provided is valid Python code that can be executed as the compilation step can raise further
SyntaxErrorexceptions. For instance, the sourcereturn 42generates a valid AST node for a return statement, but it cannot be compiled alone (it needs to be inside a function node).In particular,
ast.parse()won't do any scoping checks, which the compilation step does.警告
足夠復雜或是巨大的字符串可能導致Python解釋器的崩潰,因為Python的AST編譯器是有棧深限制的。
在 3.8 版更改: Added
type_comments,mode='func_type'andfeature_version.
- ast.unparse(ast_obj)?
Unparse an
ast.ASTobject and generate a string with code that would produce an equivalentast.ASTobject if parsed back withast.parse().警告
The produced code string will not necessarily be equal to the original code that generated the
ast.ASTobject (without any compiler optimizations, such as constant tuples/frozensets).警告
Trying to unparse a highly complex expression would result with
RecursionError.3.9 新版功能.
- ast.literal_eval(node_or_string)?
Safely evaluate an expression node or a string containing a Python literal or container display. The string or node provided may only consist of the following Python literal structures: strings, bytes, numbers, tuples, lists, dicts, sets, booleans,
NoneandEllipsis.This can be used for safely evaluating strings containing Python values from untrusted sources without the need to parse the values oneself. It is not capable of evaluating arbitrarily complex expressions, for example involving operators or indexing.
警告
足夠復雜或是巨大的字符串可能導致Python解釋器的崩潰,因為Python的AST編譯器是有棧深限制的。
It can raise
ValueError,TypeError,SyntaxError,MemoryErrorandRecursionErrordepending on the malformed input.在 3.2 版更改: 目前支持字節和集合。
在 3.9 版更改: Now supports creating empty sets with
'set()'.在 3.10 版更改: For string inputs, leading spaces and tabs are now stripped.
- ast.get_docstring(node, clean=True)?
Return the docstring of the given node (which must be a
FunctionDef,AsyncFunctionDef,ClassDef, orModulenode), orNoneif it has no docstring. If clean is true, clean up the docstring's indentation withinspect.cleandoc().在 3.5 版更改: 目前支持
AsyncFunctionDef
- ast.get_source_segment(source, node, *, padded=False)?
Get source code segment of the source that generated node. If some location information (
lineno,end_lineno,col_offset, orend_col_offset) is missing, returnNone.If padded is
True, the first line of a multi-line statement will be padded with spaces to match its original position.3.8 新版功能.
- ast.fix_missing_locations(node)?
When you compile a node tree with
compile(), the compiler expectslinenoandcol_offsetattributes for every node that supports them. This is rather tedious to fill in for generated nodes, so this helper adds these attributes recursively where not already set, by setting them to the values of the parent node. It works recursively starting at node.
- ast.increment_lineno(node, n=1)?
Increment the line number and end line number of each node in the tree starting at node by n. This is useful to "move code" to a different location in a file.
- ast.copy_location(new_node, old_node)?
Copy source location (
lineno,col_offset,end_lineno, andend_col_offset) from old_node to new_node if possible, and return new_node.
- ast.iter_fields(node)?
Yield a tuple of
(fieldname, value)for each field innode._fieldsthat is present on node.
- ast.iter_child_nodes(node)?
Yield all direct child nodes of node, that is, all fields that are nodes and all items of fields that are lists of nodes.
- ast.walk(node)?
Recursively yield all descendant nodes in the tree starting at node (including node itself), in no specified order. This is useful if you only want to modify nodes in place and don't care about the context.
- class ast.NodeVisitor?
A node visitor base class that walks the abstract syntax tree and calls a visitor function for every node found. This function may return a value which is forwarded by the
visit()method.This class is meant to be subclassed, with the subclass adding visitor methods.
- visit(node)?
Visit a node. The default implementation calls the method called
self.visit_classnamewhere classname is the name of the node class, orgeneric_visit()if that method doesn't exist.
- generic_visit(node)?
This visitor calls
visit()on all children of the node.Note that child nodes of nodes that have a custom visitor method won't be visited unless the visitor calls
generic_visit()or visits them itself.
Don't use the
NodeVisitorif you want to apply changes to nodes during traversal. For this a special visitor exists (NodeTransformer) that allows modifications.3.8 版后已移除: Methods
visit_Num(),visit_Str(),visit_Bytes(),visit_NameConstant()andvisit_Ellipsis()are deprecated now and will not be called in future Python versions. Add thevisit_Constant()method to handle all constant nodes.
- class ast.NodeTransformer?
子類(lèi)
NodeVisitor用于遍歷抽象語(yǔ)法樹(shù),并允許修改節點(diǎn)。NodeTransformer將遍歷抽象語(yǔ)法樹(shù)并使用visitor方法的返回值去替換或移除舊節點(diǎn)。如果visitor方法的返回值為None, 則該節點(diǎn)將從其位置移除,否則將替換為返回值。當返回值是原始節點(diǎn)時(shí),無(wú)需替換。如下是一個(gè)轉換器示例,它將所有出現的名稱(chēng) (
foo) 重寫(xiě)為data['foo']:class RewriteName(NodeTransformer): def visit_Name(self, node): return Subscript( value=Name(id='data', ctx=Load()), slice=Constant(value=node.id), ctx=node.ctx )
請記住,如果您正在操作的節點(diǎn)具有子節點(diǎn),則必須先轉換其子節點(diǎn)或為該節點(diǎn)調用
generic_visit()方法。對于屬于語(yǔ)句集合(適用于所有語(yǔ)句節點(diǎn))的節點(diǎn),訪(fǎng)問(wèn)者還可以返回節點(diǎn)列表而不僅僅是單個(gè)節點(diǎn)。
If
NodeTransformerintroduces new nodes (that weren't part of original tree) without giving them location information (such aslineno),fix_missing_locations()should be called with the new sub-tree to recalculate the location information:tree = ast.parse('foo', mode='eval') new_tree = fix_missing_locations(RewriteName().visit(tree))
通常你可以像這樣使用轉換器:
node = YourTransformer().visit(node)
- ast.dump(node, annotate_fields=True, include_attributes=False, *, indent=None)?
Return a formatted dump of the tree in node. This is mainly useful for debugging purposes. If annotate_fields is true (by default), the returned string will show the names and the values for fields. If annotate_fields is false, the result string will be more compact by omitting unambiguous field names. Attributes such as line numbers and column offsets are not dumped by default. If this is wanted, include_attributes can be set to true.
If indent is a non-negative integer or string, then the tree will be pretty-printed with that indent level. An indent level of 0, negative, or
""will only insert newlines.None(the default) selects the single line representation. Using a positive integer indent indents that many spaces per level. If indent is a string (such as"\t"), that string is used to indent each level.在 3.9 版更改: Added the indent option.
Compiler Flags?
The following flags may be passed to compile() in order to change
effects on the compilation of a program:
- ast.PyCF_ALLOW_TOP_LEVEL_AWAIT?
Enables support for top-level
await,async for,async withand async comprehensions.3.8 新版功能.
- ast.PyCF_ONLY_AST?
Generates and returns an abstract syntax tree instead of returning a compiled code object.
命令行用法?
3.9 新版功能.
The ast module can be executed as a script from the command line.
It is as simple as:
python -m ast [-m <mode>] [-a] [infile]
可以接受以下選項:
- -h, --help?
Show the help message and exit.
- -m <mode>?
- --mode <mode>?
Specify what kind of code must be compiled, like the mode argument in
parse().
- --no-type-comments?
Don't parse type comments.
- -a, --include-attributes?
Include attributes such as line numbers and column offsets.
If infile is specified its contents are parsed to AST and dumped
to stdout. Otherwise, the content is read from stdin.
參見(jiàn)
Green Tree Snakes, an external documentation resource, has good details on working with Python ASTs.
ASTTokens annotates Python ASTs with the positions of tokens and text in the source code that generated them. This is helpful for tools that make source code transformations.
leoAst.py unifies the token-based and parse-tree-based views of python programs by inserting two-way links between tokens and ast nodes.
LibCST parses code as a Concrete Syntax Tree that looks like an ast tree and keeps all formatting details. It's useful for building automated refactoring (codemod) applications and linters.
Parso is a Python parser that supports error recovery and round-trip parsing for different Python versions (in multiple Python versions). Parso is also able to list multiple syntax errors in your python file.